Weak-Strong Uniqueness for Maxwell--Stefan Systems

نویسندگان

چکیده

The weak-strong uniqueness for Maxwell--Stefan systems and some generalized is proved. corresponding parabolic cross-diffusion equations are considered in a bounded domain with no-flux boundary conditions. key points of the proofs various inequalities relative entropy associated analysis spectrum quadratic form capturing frictional dissipation. latter task complicated by singular nature diffusion matrix. This difficulty addressed proving its positive definiteness on subspace using Bott--Duffin matrix inverse. shown to cover several known description tumor growth physical vapor deposition processes.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak-strong Uniqueness for Measure-valued Solutions

We prove the weak-strong uniqueness for measure-valued solutions of the incompressible Euler equations. These were introduced by R.DiPerna and A.Majda in their landmark paper [10], where in particular global existence to any L initial data was proven. Whether measure-valued solutions agree with classical solutions if the latter exist has apparently remained open. We also show that DiPerna’s mea...

متن کامل

Existence Analysis of Maxwell-Stefan Systems for Multicomponent Mixtures

Positive solutions of nonlinear Dirichlet BVPs in ODEs with time and space singularities 40/2012 S. Simonov, H. Woracek Spectral multiplicity of selfadjoint Schrödinger operators on star-graphs with standard interface conditions 39/2012 Combining micromagnetism and magnetostatic Maxwell equations for multiscale magnetic simulations 36/2012 M. Bukal, E. Emmrich, and A. Jüngel Entropy-stable and ...

متن کامل

UNIQUENESS OF SOLUTION FOR A CLASS OF STEFAN PROBLEMS

This paper deals with a theoretical mathematical analysis of one-dimensional solidification problem, in which kinetic undercooling is incorporated into the This temperature condition at the interface. A model problem with nonlinear kinetic law is considered. We prove a local result intimate for the uniqueness of solution of the corresponding free boundary problem.

متن کامل

Weak-strong uniqueness for the isentropic compressible Navier-Stokes system

We prove weak-strong uniqueness results for the isentropic compressible Navier-Stokes system on the torus. In other words, we give conditions on a strong solution so that it is unique in a class of weak solutions. Known weak-strong uniqueness results are improved. Classical uniqueness results for this equation follow naturally.

متن کامل

Weak-strong uniqueness criterions for the critical quasi-geostrophic equation

We give two weak-strong uniqueness results for the weak solutions to the critical dissipative quasi-geostrophic equation when the initial data belongs to Ḣ−1/2. The first one shows that we can construct a unique Ḣ−1/2-solution when the initial data belongs moreover to L∞ with a small L∞ norm. The other one gives the uniqueness of a Ḣ−1/2-solution which belongs to C([0, T ), CMO).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Siam Journal on Mathematical Analysis

سال: 2022

ISSN: ['0036-1410', '1095-7154']

DOI: https://doi.org/10.1137/21m145210x